e e e ——— -
. A A AR S, P AR ATl A 50—l A D 4 A . . S

e O R N T R Ty R W T R T ey CIUh Ty i e SR
¢ . ’ - ” R a

Int Abs(intn)

{ ,
| If (n<0)
{
N=-n;
Return n;
J
Else
{
N=n;
Return n;
}
}
Abs(-5);

Abs(5);

Function

&R In Python, function is a group of related statements that
perform a specific task.

& Function helps to break our program into smaller and
modular chunks;

&R As our program grows larger and larger, functions make it
more organized and manageable.

R Furthermore, it avoids repetition and makes code reusable.

@R In the context of programming, a function is a named
sequence of statements that performs a computation.

TYPES

&R There are two kinds of functions in Python.
&R Built-in functions that are provided as part of Python -
input(), type(), tloat(), int() ...

R Functions that'we define ourselves and then use

def function_name(parameters):

"docstring"""

statement(s)

The kcyword “det”
inbrodutes the name

mc the ‘und:non

&yhtax of Functlon

?*
™
oy
(A ot
A COIOh () Fo“ow; thc
"—‘05"'9 parenthesis
Ar ument lists ave 0?{‘”3' and indicates the

bu{: the ?arcnﬂacscs ave NOT. start of oul

"\unt{:ioﬂs tode suite.

P o
CXS def ‘ function name l (argument (s)) :(_J

fund’.wh s tode /?

MlAST be mda\{cd under
the dek skatement

function code suite

@ Keyword def marks the start of function header.
R A function name to uniquely identity it.

@ Function naming follows the same rules of writing identifiers in
Pvthon.

(R Parameters (arguments) through which we pass values to a
function. They are optional.

R A colon(:) to mark the end of function header.

R Optlonal documentation string (docstring) to descrlbe what the
“function does.

OR One or more valid python statements that make up the function

body.

(R Statements must have same indentation level (usually 4 spaces).
(R An optional return statement to return a value from the function.

big = max([5,8,2])

/Argument

big = max(‘hello world’)

Assign\mént

'W'— Result

’ade

‘J(%\edm '.\\Z\%Wa Ok\fax\\ex\r\
2 e ncti
pe e 2) C
t'> ('% all S
' N O W°
Oﬂe@\eém \\faxﬂ%\\fa()\\@\\fc\\wz\d@ Q\e@\ed\’)\g | 2\(6\’\’& W\\’\@ 2O
\\z\&%\\@OW\\\@\N@d@

~Type conversion

\ A\ 5\\6

P functions ..
: (5

A
'\?‘\Ne\
.2\\

\\2&9\\?\ o))

R built-in functions

Type Conversions

>>> print float(99) / 100

& When you put an 099
integer and floating >>> =42
point In an expression >>> type(i)
the integer isimplicitly <type 'int'>
converted to a float >>> f = float(i)
R You can control this >>> print f
with the built in 42 0
functions int() and >>> type(f)

float() <type 'float'>

>>>print 1+ 2 *float(3) /4 -5
-2.5

String Conversions

& You can also use int()
and float() to convert
between strings and
integers

R You will get an error
if the string does not
contain numeric
characters

>>> sval = 123

>>> type(sval)

<type 'str'>

>>> print(sval'+ 1)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: cannot concatenate 'str'

and 'int'

>>> jval = int(sval)

>>> type(ival)

<type 'int>

>>> printival +1

124

>>> nsv = 'hello everyone'

>>> niv_= int(nsv)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid literal for int()

Python Math
unctions

&R Python has a math module that provides most of the familiar
mathematical functions.

R A module is a file-that contains a collection of related
functions.

AC;

Function Returns (description)
abs(x) The absolute value of x: the (positive) distance between x and zero.
o\\e’e
(& . - .
2 ceil(x) The ceiling of x: the smallest integer not less than x
cmp(X. V) -lifx<y. 0ifx=y.orlifx>y
eXp(x) The exponential of x: X
fabs(x) The absolut}s value of x.
floor(x) The floor of x: the largest integer not greater than x
&) ;
log(x) The natural logarithm of x. for x> 0

log10(x) The base-10 logarithm of x for x> 0.

max(x1. x2....) The largest of its arguments: the value closest to positive infinity

<

(i \
\ "
\

min(x1. x2....) The smallest of its arguments: the value closest to negative infinity

pow(X. V) The value of x**y.

o x rounded to n digits from the decimal point. Python rounds away
round(x [.n]) from zero as a tie-breaker: round(0.5) 1s 1.0 and round(-0.5) 1s -1.0.

v\l VN A
X\ ~ Y \&
\) \ A\
A O3 O\
>\ z Vv
-\ \ -

X
o\
A SO\
1 |
N \

>>> ratio = signal_power / noise_power
>>> decibels = 10 * math.log10(ratio)

>>> radians = (.7
>>> height:= math.sin(radians)

o degrees =45 |
>>> radians = degrees / 360.0 * 2 * math.pi

>>> math.sin(radians)
>>> math.sqrt(2) / 2.0

Composition .o

& Python functions can be composed, meaning that
you use the result of one function as the input to
another.

(R >>>x=2
R >>> yo= “math. exp(math.log(x+1))
R >>> y

~““e= 3.0000000000000004

R def print_twice(n):

R print(n,n)

R >>> print_twice("Hello")
o= Hello Hello.+*"

R >>> print_twice(2)

GR 2.

&R >>> print_twice(abs(-2))

e 22 o
&R >>> print_twice(max(3,4,abs(-5),6))
®R66
R >>>

Adding New Functions

R A function definition specifies the name of a new
function and the sequence of statements that execute
when the function is called.

R We create a new function using the def keyword
followed by optional parameters in parenthesis.

R We indent the body of the function.

R This defines the function but does not execute the body of
the function

def print_lyrics():
print("I'm a jack, and I'm okay.")
print ("I sleep all night and I work all day.")

def print_lyrics():
print(“Hi")

def repeat lyrics():
print.dyrics()
print_lyrics()

Flow of execution

&R The order in which statements are executed, which is called
the flow of execution.

&R Execution always begins at the first statement of the
program. |

&R Statements are executed one at a time, in order from top to
bottom?

02 Functlon definitions do not alter the ﬂow of executlon of the
] program

R But statements inside the function are not executed until the
function is called.

R A function call is like a detour in the flow of
execution.

R Instead of going to the next statement, the flow
jumps to the'body of the function, executes all the
statements there, and then comes back to pick up
where it left off.

Definitions and Uses

* Once we have defined a function, we can call (or
invoke) it as many times as we like

* This is the store and reuse pattern

X=9
print(‘Hello*)

def print_lyrics():
print("I'm a jack, and I'm okay.”)
print (“l sleep all night and | work all day.”)

print('Yo) _
print_lyrics() S
X=X+2 9

I'm a jack, and I'm okay.

print(x) !’sleep all night and | work all day.

.«')x\e'\"

..
“ ’

[Parameters and

X ~\C
S V'

arguments

““““

~
&

R Inside the function, the arguments are assigned to
variables called parameters

A
A\

Arguments

* Anargument is a value we pass into the function as
its input when we call the function

* We use arguments so we can direct the function to
do different kinds of work when we call it at
different times

* .~ We put the arguments in parenthesis aftet the name
of the function

big = max('Hello world')

Parameters

R A parameter is a variable
which we use in the
function definition that is
a “handle” that.allows the
code in the function to
access the arguments for a
particular function
Invocation.

def greet(lang):
If lang == "es":
print('Hola’)
elif lang == "fr":
print(‘Bonjour’)
else:
print('Hello’)
>>> greet('en’)
Hello
>>> greet(‘'es’)
Hola
>>>-greet('fr’)
Bonjour
>>>

Varlables and Parameters Are Local

def prmt tw1ce(phrase)
prmt (phrase)
print (phrase)

def print _joined twice(partl, part2) :
joined = partl + part2
print twme(;omed)
>>> linel & "Happy blrthday,"
>>>. hne2 "to you."
5> print_joined twice(linel, 11ne2)
>>>print(joined)

NameError: name ‘joined' is not defmed

R Like state diagrams, stack diagrams show the value of
each variable, but they also show the function each

variable belongs to.
print_twice

print_joined twice

main

D)
A ‘V/

SO\
|

| ‘t\‘

O
L - L\",\':"
\ "

\

A\
v AN
~\N\C

phrase "Happy birthday, to you."
part1 "Happy birthday, "
"to you."
part2 you
joined "Happy birthday, to you."
line "Happy birthday, "
line2 "to you."

5 \/
~\C
A\
o\
\f L’.l\

Main()

\ >
A
)

Print_joined_twice()'~

‘/—S\:\ o

Print. fwice()

M
-\ o/
AAN

/L

Traacebck (innermost last):

File "test.py”, line 13, in __main__
print_joined_twice(line1, line2)

File "test.py”, line 5, in print_joined_twice
print_twice(joined)

File "test.py”, line 9, in print_twice
print(joined)

NameError: name ‘joined’ is not defined

Fruifful functions and
"~ void functlons

J

@)
R x = math.cos(radians)
R golden = (math.sqrt(5) +1) / 2
O
.\\a\?;@‘“ ;
_,\\L\O. I\
BT N
5 Q\\’ﬁ\) ' - O\'\L\
(@rf\\ J \\‘ \f\\\\‘.
G N
C \Q\:‘j
'::\\Q

@

Why Functions?

R Creating a new function gives you an opportunity to
name a group of statements,which makes your
program easier to read and debug.

R Functions can® make a program smaller by
eliminating ‘repetitive code. Later, if you make a
change;you only have to make it in one place.

&k Dividing a long program into functionsallows you to
**’debug the parts one at a time and then assemble them
into a working whole.

R Well-designed functions are often useful for many
programs. Once you write and debug one, you can
reuse it.

def factorial ()"
if not isinstance(n, int):
| print 'Factorial is only defined for integers.'
return None
elif n <O0:

print 'Factorial is not defined for negative

integers.'
return None
elif n =02
return 1
else:

return n * factorial(n-1)

Strings

R A string is a sequence
R >>> fruit = “apple’
R >>> |etter = fruit|1]

R >>> letter = fruit[1.5] |
R TypeError string indices must be mtegers not float

0o
X \"_\\"
A\
¢ &,

A<

‘raversal with a for
loop

index =0

while index < len(fruit):
letter = frult[lndex]
print letter ‘
index = - index + 1

1’«”/
Q.

for char in fruit:
print char s

R prefixes = 'JKLMNOPQ'
R suffix = 'ack'’

R for letter in prefixes:

R print letter'+ suffix

NX C
.'\'\’\/C\\A
O
x\o 0\\»
e 111 1
\
\\
007
u r ;‘ ,.Z:' - QI’C\‘\(’)\-
“‘«sv "‘ C\”

&®R >>> s = 'Monty Python'

&R >>> print s[0:5]

&R Monty P

R >>> pngtsfé 12]

R Pythﬁ\l’l 0\\;\@6@

\()’

)
P\
N €

o

. Strings are immutable
R >>> greeﬁng — 'HellO, e
R >>> greeting[0] =T

& TypeError: 'str-object does not support item
assignment®"

oa>>> greeting = 'Hello, world!
“" e >>>new_greeting =']' + greeting[1:]"

™

R >>> print new_greeting

Searching .

def find(word, letter):
index =0
while index < len(word):
if Wor,:d[in'd'ex] == letter:
_réturn index
»'index = index + 1
return -1

Exercise 8.4. Modify find so that it has-a t}urd parameter, the index
in word where it should start lookmg

Q\

word = “apple’
count =0
for letter in word
if letter =P
=" count = count + 1
¢ prlht(count)

- <&
L’,‘\‘ “—.‘\;

)

O
(\ <

’8\6@

N S
\\%\\{c\ 3 @c\

X\ ‘2\

'.\\%\(«3 Strlng metho dS\@\ﬂO\x
J Cﬁj O;(,”‘\@Q

R Lower()

&R Upper()

R Find() o®
R Replace\(}a\“

o2 Len("

9\\\@

- The in operator.~

g _,;_b

& The word in is a boolean operator that takes two
strings and returns True if the first appears as a
substring in the second

R >>> '3’ m 'banana

R True »

xR >>> 'seed' in 'banana’ |
“’R False =

def in_both(word1, word?2):
for letter in word1:
if letter in word?2:
print letter

‘v\«\Q,
N fo 2

. .
L]

if word < “kiwi":

print("Your word,' + word + ', comes before kiwi.”)
elif word > "kiwi'x

print(*Your word,' + word + ', comes after kiwi.")
else: = ¥

print('All right, kiwis.”)
i | e

